2.7. Documentation
Open the notebook in Colab
Open the notebook in Colab
Open the notebook in Colab
Open the notebook in SageMaker Studio Lab

While we cannot possibly introduce every single PyTorch function and class (and the information might become outdated quickly), the API documentation and additional tutorials and examples provide such documentation. This section provides some guidance for how to explore the PyTorch API.

While we cannot possibly introduce every single MXNet function and class (and the information might become outdated quickly), the API documentation and additional tutorials and examples provide such documentation. This section provides some guidance for how to explore the MXNet API.

While we cannot possibly introduce every single TensorFlow function and class (and the information might become outdated quickly), the API documentation and additional tutorials and examples provide such documentation. This section provides some guidance for how to explore the TensorFlow API.

2.7.1. Functions and Classes in a Module

In order to know which functions and classes can be called in a module, we invoke the dir function. For instance, we can query all properties in the module for generating random numbers:

import torch

print(dir(torch.distributions))
['AbsTransform', 'AffineTransform', 'Bernoulli', 'Beta', 'Binomial', 'CatTransform', 'Categorical', 'Cauchy', 'Chi2', 'ComposeTransform', 'ContinuousBernoulli', 'CorrCholeskyTransform', 'CumulativeDistributionTransform', 'Dirichlet', 'Distribution', 'ExpTransform', 'Exponential', 'ExponentialFamily', 'FisherSnedecor', 'Gamma', 'Geometric', 'Gumbel', 'HalfCauchy', 'HalfNormal', 'Independent', 'IndependentTransform', 'Kumaraswamy', 'LKJCholesky', 'Laplace', 'LogNormal', 'LogisticNormal', 'LowRankMultivariateNormal', 'LowerCholeskyTransform', 'MixtureSameFamily', 'Multinomial', 'MultivariateNormal', 'NegativeBinomial', 'Normal', 'OneHotCategorical', 'OneHotCategoricalStraightThrough', 'Pareto', 'Poisson', 'PowerTransform', 'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'ReshapeTransform', 'SigmoidTransform', 'SoftmaxTransform', 'SoftplusTransform', 'StackTransform', 'StickBreakingTransform', 'StudentT', 'TanhTransform', 'Transform', 'TransformedDistribution', 'Uniform', 'VonMises', 'Weibull', 'Wishart', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'bernoulli', 'beta', 'biject_to', 'binomial', 'categorical', 'cauchy', 'chi2', 'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal', 'identity_transform', 'independent', 'kl', 'kl_divergence', 'kumaraswamy', 'laplace', 'lkj_cholesky', 'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', 'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 'pareto', 'poisson', 'register_kl', 'relaxed_bernoulli', 'relaxed_categorical', 'studentT', 'transform_to', 'transformed_distribution', 'transforms', 'uniform', 'utils', 'von_mises', 'weibull', 'wishart']
from mxnet import np

print(dir(np.random))
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_mx_nd_np', 'beta', 'chisquare', 'choice', 'exponential', 'gamma', 'gumbel', 'logistic', 'lognormal', 'multinomial', 'multivariate_normal', 'normal', 'pareto', 'power', 'rand', 'randint', 'randn', 'rayleigh', 'shuffle', 'uniform', 'weibull']
import tensorflow as tf

print(dir(tf.random))
['Algorithm', 'Generator', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_sys', 'all_candidate_sampler', 'categorical', 'create_rng_state', 'experimental', 'fixed_unigram_candidate_sampler', 'gamma', 'get_global_generator', 'learned_unigram_candidate_sampler', 'log_uniform_candidate_sampler', 'normal', 'poisson', 'set_global_generator', 'set_seed', 'shuffle', 'stateless_binomial', 'stateless_categorical', 'stateless_gamma', 'stateless_normal', 'stateless_parameterized_truncated_normal', 'stateless_poisson', 'stateless_truncated_normal', 'stateless_uniform', 'truncated_normal', 'uniform', 'uniform_candidate_sampler']

Generally, we can ignore functions that start and end with __ (special objects in Python) or functions that start with a single _(usually internal functions). Based on the remaining function or attribute names, we might hazard a guess that this module offers various methods for generating random numbers, including sampling from the uniform distribution (uniform), normal distribution (normal), and multinomial distribution (multinomial).

2.7.2. Specific Functions and Classes

For more specific instructions on how to use a given function or class, we can invoke the help function. As an example, let’s explore the usage instructions for tensors’ ones function.

help(torch.ones)
Help on built-in function ones in module torch:

ones(...)
    ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    Returns a tensor filled with the scalar value 1, with the shape defined
    by the variable argument size.

    Args:
        size (int...): a sequence of integers defining the shape of the output tensor.
            Can be a variable number of arguments or a collection like a list or tuple.

    Keyword arguments:
        out (Tensor, optional): the output tensor.
        dtype (torch.dtype, optional): the desired data type of returned tensor.
            Default: if None, uses a global default (see torch.set_default_tensor_type()).
        layout (torch.layout, optional): the desired layout of returned Tensor.
            Default: torch.strided.
        device (torch.device, optional): the desired device of returned tensor.
            Default: if None, uses the current device for the default tensor type
            (see torch.set_default_tensor_type()). device will be the CPU
            for CPU tensor types and the current CUDA device for CUDA tensor types.
        requires_grad (bool, optional): If autograd should record operations on the
            returned tensor. Default: False.

    Example::

        >>> torch.ones(2, 3)
        tensor([[ 1.,  1.,  1.],
                [ 1.,  1.,  1.]])

        >>> torch.ones(5)
        tensor([ 1.,  1.,  1.,  1.,  1.])
help(np.ones)
Help on function ones in module mxnet.numpy:

ones(shape, dtype=<class 'numpy.float32'>, order='C', ctx=None)
    Return a new array of given shape and type, filled with ones.
    This function currently only supports storing multi-dimensional data
    in row-major (C-style).

    Parameters
    ----------
    shape : int or tuple of int
        The shape of the empty array.
    dtype : str or numpy.dtype, optional
        An optional value type. Default is numpy.float32. Note that this
        behavior is different from NumPy's ones function where float64
        is the default value, because float32 is considered as the default
        data type in deep learning.
    order : {'C'}, optional, default: 'C'
        How to store multi-dimensional data in memory, currently only row-major
        (C-style) is supported.
    ctx : Context, optional
        An optional device context (default is the current default context).

    Returns
    -------
    out : ndarray
        Array of ones with the given shape, dtype, and ctx.

    Examples
    --------
    >>> np.ones(5)
    array([1., 1., 1., 1., 1.])

    >>> np.ones((5,), dtype=int)
    array([1, 1, 1, 1, 1], dtype=int64)

    >>> np.ones((2, 1))
    array([[1.],
           [1.]])

    >>> s = (2,2)
    >>> np.ones(s)
    array([[1., 1.],
           [1., 1.]])
help(tf.ones)
Help on function ones in module tensorflow.python.ops.array_ops:

ones(shape, dtype=tf.float32, name=None)
    Creates a tensor with all elements set to one (1).

    See also tf.ones_like, tf.zeros, tf.fill, tf.eye.

    This operation returns a tensor of type dtype with shape shape and
    all elements set to one.

    >>> tf.ones([3, 4], tf.int32)
    <tf.Tensor: shape=(3, 4), dtype=int32, numpy=
    array([[1, 1, 1, 1],
           [1, 1, 1, 1],
           [1, 1, 1, 1]], dtype=int32)>

    Args:
      shape: A list of integers, a tuple of integers, or
        a 1-D Tensor of type int32.
      dtype: Optional DType of an element in the resulting Tensor. Default is
        tf.float32.
      name: Optional string. A name for the operation.

    Returns:
      A Tensor with all elements set to one (1).

From the documentation, we can see that the ones function creates a new tensor with the specified shape and sets all the elements to the value of 1. Whenever possible, you should run a quick test to confirm your interpretation:

torch.ones(4)
tensor([1., 1., 1., 1.])
np.ones(4)
array([1., 1., 1., 1.])
tf.ones(4)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([1., 1., 1., 1.], dtype=float32)>

In the Jupyter notebook, we can use ? to display the document in another window. For example, list? will create content that is almost identical to help(list), displaying it in a new browser window. In addition, if we use two question marks, such as list??, the Python code implementing the function will also be displayed.

The official documentation provides plenty of descriptions and examples that are beyond this book. Our emphasis lies on covering important use cases that will allow you to get started quickly with practical problems, rather than completeness of coverage. We also encourage you to study the source code of the libraries to see examples of high quality implementations for production code. By doing this you will become a better engineer in addition to becoming a better scientist.